The story of the invention that could revolutionize batteries

The story of the invention that could revolutionize batteries

The world has been clamoring for a super-battery.

Since about 2010, a critical mass of national leaders, policy professionals, scientists, entrepreneurs, thinkers and writers have all but demanded a transformation of the humble lithium-ion cell. Only batteries that can store a lot more energy for a lower price, they have said, will allow for affordable electric cars, cheaper and more widely available electricity, and a reduction in greenhouse gas emissions. In the process, a lot of gazillionaires will be created.

But they have been vexed. Not only has nobody created a super-battery; a large number of researchers have lost faith in their powers to do soperhaps ever. Entrepreneurs such as Teslas Elon Musk continue to tinker with off-the-shelf batteries for luxury electric cars and home power-storage systems, but industry hands seem generally to doubt that their cost will drop enough to attract a mass market any time soon. Increasingly, they are concluding that the primacy of fossil fuels will continue for decades to come, and probably into the next century.

This is where Yet-Ming Chiang enters the picture. A wiry, Taiwanese-American materials-science professor at the Massachusetts Institute of Technology (MIT), Chiang is best known for founding A123, a lithium-ion battery company that had the biggest IPO of 2009. The company ended up filing for bankruptcy in 2012 and selling itself in pieces at firesale prices to Japanese and Chinese rivals. Yet Chiang himself emerged untainted.

In 2010, having rounded up $12.5 million from Boston venture capital firms and federal funds, Chiang launched another company. Again, it was in batteries. And today, after five years in stealth mode, he is going public. There may be a way to revolutionize batteries, he says, but right now it is not in the laboratory.

Instead, its on the factory floor. Ingenious manufacturing, rather than an ingenious leap in battery chemistry, might usher in the new electric age.

When it starts commercial sales in about two years, Chiang says, his company will slash the cost of an entry-level battery plant 10-fold, as well as cut around 30% off the price of the batteries themselves. Thats thanks to a new manufacturing process along with a powerful new cell that adds energy while stripping away cost. Together, he says, they will allow lithium-ion batteries to begin to compete with fossil fuels.

But Chiangs concept is also about something more than just cheaper, greener power. Its a model for a new kind of innovation, one that focuses not on new scientific invention, but on new ways of manufacturing. For countries like the US that have lost industr

ies to Asia, this opens the possibility of reinventing the techniques of manufacture. Those that take this path could own that intellectual propertyand thus the next manufacturing future.

Source: Quartz

SMART GRID Bulletin May 2017


View all SMART GRID Bulletins click here


Enter your email-id to subscribe to the

SMARTGRID Bulletins
S
M
T
W
T
F
S
29
30
31
01
02
03
04
05
06
07
09
10
11
12
29
30
01