Expediting a Renewable Energy Future With High-Voltage DC Transmission

GE’s Patrick Plas makes the case for advancing HVDC systems to support wind and solar.

It’s widely agreed that one of the best ways to reduce carbon emissions around the globe is to bring on-line more renewable energy. However, the current century-old grid system presents challenges to this goal, with inefficient infrastructure and independent grid systems.

Moreover, new transmission and distribution projects potentially face significant delays related to right-of-way issues, such as permits for crossing waterways or resistance from residential neighborhoods, as well as limited financing options related to high upfront investments.

Collectively, these issues are slowing the rollout of renewable energy projects. 

That’s where high-voltage direct current (HVDC) transmission systems come in. HVDC can be more expensive to build, but is more cost-effective over the long term compared to the more common alternating current (AC) systems. Despite the upfront costs, HVDC is rising in popularity around the globe for its ability to interconnect grids across borders, allow three times as much power to be transferred over longer distances -- like from a remote wind farm to an urban metropolis -- and control intermittent power with the lowest loss of energy.

So while HVDC systems aren’t new, they’re now seeing significant uptake. In fact, the global HVDC market, which is currently valued at $6.2 billion, is expected to reach $14.36 billion by the end of 2026, according to a report by Future Market Insights. 

An HVDC transmission system is the renewable energy industry’s best bet for expediting the deployment of cheap, clean power for our everyday electricity needs. But urgent policy support around regulations and financing is needed for HVDC technology to continue on its positive trend. 

 

Source : https://www.greentechmedia.com/articles/read/expediting-a-renewable-energy-future-with-high-voltage-dc-transmission

SMART GRID Bulletin October 2017


View all SMART GRID Bulletins click here


Enter your email-id to subscribe to the

SMARTGRID Bulletins
S
M
T
W
T
F
S
31
06
07
10
11
12
13
13 November 2017
17
17 November 2017
18
19
24
25
26
27