World : “Baseload” in the Rearview Mirror of Today’s Electric Grid

With changing dynamics of both supply and demand in the electricity industry, including low natural gas prices, flat electricity demand due to increased efficiency, and robust growth of cheap, clean renewables, the term “baseload”—which historically has been used to refer to large coal and nuclear plants—is now outdated. That’s the conclusion of new analysis released by The Brattle Group , a global economics consulting firm, which says grid planners and operators should be technology-neutral in finding the best energy resources to reliably meet the operational needs of the modern electricity system. 

Industry stakeholders should focus on defining, compensating, and planning around the operational needs of the power grid, as well as public policy goals and customer preferences, rather than applying anachronistic frameworks that group power plants according to whether or not they are “baseload,” “intermediate,” or “peaking.”  

Image source: The Brattle Group
Conceptual Electricity Demand and Supply Mix in Traditional Planning. Historically, utility planners grouped power plants according to whether they were “baseload,” “intermediate,” or “peaking.” This old way of thinking neglects the possibility that a mix of resources can supply electricity at any time of day and do not need to be layered on top of one another in this rigid fashion.

Image source: The Brattle Group
Illustration of Electricity Demand and Supply Mix with High Renewables Penetration. Today, grid operators allow a mix of resources to dynamically contribute to a reliable and cost-effective system.

It’s all about grid services
The Brattle report, commissioned by NRDC, explains that no single technology or fuel type is needed to keep the lights on 24/7. Instead, a blend of several kinds of services describe what it takes to reliably deliver power to customers and capture all of the nuts and bolts of our complex electricity system (“the world’s largest machine”). Examples of such services include energy delivery, frequency regulation (holding electric current within a necessary specified band), ramping capacity, and emergency backup capability.

By focusing on these services rather than specific fuels or technologies, grid operators and planners can leverage and incentivize the full range of resources capable of meeting customer and public policy needs, such as reducing climate-changing pollution. Resources that can be combined to reliably serve customers include many different types of large power generators, including fossil fuel-fired units, nuclear plants, and variable renewable resources like wind and solar; smaller distributed generation units like rooftop solar located at or near utility customers; demand reductions from energy efficiency or “demand response,” which curtails energy use during periods when the grid is under the most stress; and emerging technologies like energy storage.


Source :

Smart Grid Bulletin July 2019

View all SMART GRID Bulletins click here