CONFERENCE DAY 3 – 04 MARCH 2021 - ROUNDTABLE
ROUNDTABLE - 4: URBAN AIR MOBILITY SYSTEMS (UAM)

Venue & Time

Venue: Roundtable Hall
Time:
- New York: 01:00 ~ 03:00
- Paris: 07:00 ~ 09:00
- India: 11:30 ~ 13:30
- Tokyo: 15:00 ~ 17:00

Session Background

Urban Air Mobility (UAM) as a concept was defined by NASA as “safe and efficient air traffic operations in a metropolitan area for manned aircraft and unmanned aircraft systems”. These aircraft would carry cargo or 1-5 passengers on short-range trips (less than 100 km). With rising urbanisation, growing traffic jam and an e-commerce boom, modern, safe and affordable modes of transportation are required. UAM offers an opportunity for seamless, secure, and rapid transportation to alleviate current and potential challenges faced in urban areas. UAM's potential has led to various industry efforts; there are now over 100 type of UAM vehicles globally in different stages of development. The key enablers for development of UAM systems are airspace integration, expansion of infrastructure, customer’s acceptance, seamless integration into linked mobility systems, and a broad range of other ecosystem components, that are still evolving.

Today, over 4 billion people, or more than half the world’s population, live in cities. They are at the epicenter of economic activity, with more than 80% of global GDP generated in cities. As the size of urban populations grows, traffic congestion and air pollution remain as major threats that take a toll on economic growth. It is imperative for governments to seek alternative solutions by making strategic moves to promote UAM system development as an alternative to existing ground transportation.

Discussion Points

1. **Learnings from Global Practices and Regulations**
 a. Case Studies on Global Practices of UAM
 b. Standards and Regulations for manned and unmanned Drones

2. **Technical Feasibility of UAM for Human transport in metropolitan Areas**
 a. Autonomy
 b. Advancement of Battery Technologies for UAM
 c. Weather

3. **Commercial viability of UAM Systems to Ferry Passengers**

4. **New Infrastructure Requirement**
 a. Landing Site
 b. Electric grid access
 c. Navigation Systems

5. **Environmental Impacts of UAMs**

6. **Safety Measures**

11:30 ~ 12:00

Inaugural Session

Welcome Address: Reji Kumar Pillai, President, India Smart Grid Forum, & Chairman, Global Smart Energy Federation

Special Address: John Cavolowsky, Director, Transformation Aeronautics Concepts Program (TACP), NASA Aeronautics Research Mission Directorate (ARMD), USA

12:00 ~ 13:15

India Roadmap for UAM Systems and Foreign Use Cases

Chair: John Cavolowsky, Director, Transformation Aeronautics Concepts Program (TACP), NASA Aeronautics Research Mission Directorate (ARMD), USA

Speakers:
1. Christian Eschmann, Acting Head of Lab, German Aerospace Center
2. Andrew Hately, U-space ConOps Development, EUROCONTROL
3. Kanika Tekriwal, Chief Executive Officer and Co-Founder, JetSetGo (JSG)
4. Mehmet Emre YAZICI, Independent Consultant
5. Kanishka Agiwal, Head- Service Lines, India/ South Asia, WWPS, Amazon Internet
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6.</td>
<td>Rohan Verma, Chief Executive Officer and Executive Director, MapmyIndia</td>
</tr>
<tr>
<td>7.</td>
<td>OD Naidu, Global R&D - APTSPLU, Hitachi ABB Power Grids</td>
</tr>
<tr>
<td>9.</td>
<td>Kowthamraj VS, NITI Aayog, GoI</td>
</tr>
<tr>
<td>10.</td>
<td>Anil Chandaliya, CEO, Passenger Drone Research Pvt Ltd</td>
</tr>
</tbody>
</table>

13:15 ~ 13.30
Key Takeaways and Next Steps